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SUMMARY

The purpose of this memorandum is twofold: to extend

the concepts discussed in Technical Memorandum No. 2 and to lay

the groundwork for Technical Memorandum No. 26. Technical Memo-

randum No. 2 was concerned with the basic concepts of signal de-

sign and signal reception when the channel interference is addi-

tive white gaussian noise. By white noise we mean that the noise

power per unit bandwidth is the same at all frequencies of interest.

In this case the key results are:

1. The optimum receiver should use correlation techniques (or

the equivalent) in which the received signal is multiplied wlth each

of the possible signals that could have been sent. The product sig-

nals are then averaged over the signal duration. That correlation

process yielding the greatest output at the end of the signal dura-

tion indicates which signal is most likely to have been the one sent.
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Equivalent techniques are In some cases the same as synchronous

detection, while in others the same as filtering (matched filter).

2. The design of optimum signals, when the interference is

white noise, is based on the distance parameter

T

D = I" [s°(t) " s1(t)]z dt
%2

0

which indicates the distinguishability between two signals So(t )

and s_ (t) as an equivalent amount of energy per message. For

example, if PSK (180°) is used and the sinusoids are of peak ampli-

tude A,

D[PSK (180°)] = 2Az T

If FSK is used

D[FSK] = As T

Hence PSK (180° ) signals have 3db more distinguishability for the

same power and duration as FSK signals.

When the interference is additive gaussian, but not white

(i.e. the noise power per unit bandwidth is not the same at all

frequencies), correlation techniques are again found to be opti-

mum, but the received signal is correlated not with the possible

message signals, but with modified signals. These modified slg-

nals are obtained from the characteristics of the message signals

and the noise power spectrum. The form of these modified signals

C
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is not obvious, although the results obtained for specific cases

agree with intuitive notions. The key results are as follows.

Consider that there are two possible signals the trans-

mitter can send, So(t) and st(t). Let the noise power spectrum

be W(_) and the corresponding autocorrelation function be R(x).

Now if y(t) is the received signal, the optlmtnm receiver is

based on correlation - i.e. forming

T

S
0

y(t) f(t) dt

in which T is the signal duration and f(t) is the solution of the

integral equation

T

0

R(t-T) f(_) dr = So(t) - s (t)

Basic to the solution of this equation is the corresponding homo-

geneous integral equation

T

R(t-x) _(x) dx = _ _(t)

0

As will be discussed in Technical Memorandum No. 26, sig-

nals found from sums of those waveforms which satisfy this latter

equation have neat properties. One significant property is that
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bandwidth limitations can be imposed on the selection of sig-

nal waveforms by selecting an appropriate noise power spectrum,

albeit that the true noise power spectrum is white. In effect

the selected noise power spectrum (chosen cup-shape) acts as a

weighting function that concentrates the signal power into a

narrow range of frequencies.
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DISCUSSION

I. Introduction

The decision problem encountered at the receiver of a

communication system may be formalized by considering that the

receiver is trying to determine which of two possible signals

is more likely to have been the transmitted signal. Analysis

of this type of binary decision can be extended to cover multi-

signal transmissions by simply considering the possibilities

two at a time. For this reason we will therefore consider that

there are only two possible signals the transmitter can send,

So(t) and (t).

As discussed in Technical Memorandum No. 2, in a broad

sense the receiver is a computer - although in many cases a fairly

simple analog computer. From the incoming signal, y(t), the re-

ceiver calculates which possible transmitted signal, So(t) or

s,(t) , more likely would result in y(t) being received. Formally

the probability that So(t) sent results in y(t) being received,

p[y(t)/so(t) ], and the probability that s_ (t) sent results in

y(t) being received, p[y(t)/s1(t)] , are calculated and the llke-

lihood ratio

P [Y(t)/So(t) ]

P[Yit)/sl (t) ]



is considered. This ratio (or more usually somefunction of it)

is present in the receiver as a voltage level. For completely

automatic operation this voltage level is comparedwith a pre-

set threshold as a meansof deciding whether So(t) or sI (t) was

sent. Alternatively, the voltage level can be presented to an

operator for the final decision. The choice of the threshold

level depends on the degree to which each signal is a priori ex-

pected (if this is known), the relative costs of making errors,

or someother value Judgment. For example, as discussed in

Technical MemorandumNo. 2, a threshold level can be used which

corresponds to minimumerror probability.

Since the noise is additive the conditional probability

of the form p[y(t)/s(t)] is simply the probability that the noise

waveform is the difference [y(t) - s(t)]. The decision as to

whether So(t) or sI (t) wasmore likely the signal sent is there-

fore the sameas deciding if the noise waveform was more likely

no(t) = [y(t) - So(t) ], or n_(t) = [y(t) - s_(t) ].

To use this fact the possible signals so(t) and st(t) ,

and the received signal y(t) are sampled at instants of time t&

apart such that there are N samples over the waveforms of dura-

tion T. The channel is presumeddistortionless so that the kth

sample of the signal sent causes the kth sample of the received

signal. If we let



Sok be the value of So(t) at t : kt&

then

Slk be the value of s1(t) at t = kt&

Yk be the value of y(t) at t = kt&

p[y(t)/So(t)] = Lira p[y_,yz,...YN/So_,So_,...SoN]

t_-O

is the same as expecting the interference to have the sampled

values

nl = Yx - sol

n_ = Ys - Sos

nN = YN - SoN

Similarly,

p[y(t)/s 1(t) S = Lim p[y_,yz,...YN/S11,s_z,...S_N]

ta-O

is the same as expecting the interference to have the sampled

value s

nl = Yl - s:,

ns = yz - s:s

nN = YN-S_N
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Commenton rigor: This procedure is satisfactory if the total
noise power is finite. If the total noise power is infinite,
the "samples" are integrated values of the signals over each
duration t&. Alternatively, the noise power density spectrum
can be truncated at somehigh frequency f. Then as t_ O,
f_oo.

For the case in which the interference is white gausslan

noise the sampledvalues of the interference are independent and

the analysis is greatly simplified. In this case, the Joint prob-

ability that the sampledvalues of the noise are n:,n_,...nk...n N

can be written as the product of the individual or marginal proba-

bilities. Thus

p(nl,nz,...nk...nN) -- p(nI) P(r_)...P(nk)...P(n N)

for which
i -n /2w f

p(n) = e

since p(n) has a Gaussian distribution and the noise power per

unit bandwidth is _. The remainder of the procedure for deter-

mining the optimum receiver is straightforward (See Technical

Memorandum No. 2),except for simplicity the log of the likelihood

ratio is used in place of the likelihood ratio. As review, let us

outline this procedure. N

p(n 1,nz,...nk...n N) =
1

w f

C
Ay
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Thus

P (Y_'Ym '''"YN/S°1 's°_ '''" SN I'

J

p (y,y_,••.YN/S,I,sl,,...sIN)

N

1 _ (Yk_Sok)Se 2_f

- _ (Yk-S_Q _
e

or the log of the likelihood ratio is

N

i [[
2W_ f k=l

(Yk-Sok)_- (Yk-Slk)_]

i
In the limit as t& = -K _ O, this becomes

1

2w_

T

{S [y(t) - So(t)]m - [y(t) - s_(t)]2} dt

0

in which T is the duration of the signals. This quantity is the

actual voltage level "calculated" by the receiver as a basis for

deciding which signal is present. If we multiply the terms out

and discard the factor _W _ as being a scale factor, then the de-

cision voltage becomes

T T

2 S Y(t)[s°(t) - st(t)] dt + _ [sT(t)- s_(t)] dt

0 0

The significant part of this expression is

IG
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T

I y(t)[So(t) - s_(t)] dt

0

since this is the only component which depends on the actual

signal sent. The remainder maybe included in the selection

of the threshold level. Now, if we let

f(t) = [So(t) - S1(t)]

we obtain the result that the received signal y(t) should, for

optimum detection, be correlated with f(t) and the output of the

correlator (or the equivalent) be used to decide which signal was

sent. For the case in which the interference is white noise , the

signal to be generated at the receiver is the difference of the

message signals. As we shall see for the colored noise case, the

optimum receiver will be similar, but f(t) will include not only

the signal structure but the noise structure as well.

41
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II. Details of the Direct Solution

When the interference is colored noise the Joint proba-

bility p(nl,nz,...nk...nN) cannot be written as the product of the

marginal probability p(n) because the noise is no longer independent

fr_n one sample to another. However, we can use the fact that the

noise is gaussianbyuslng the Nth order Joint gaussian distribu-

tion. The procelure is algebraically complex but not insurmountable.

To reduce this complexity matrix notation will be used.

The Joint gaussian distribution is not readily written in

terms of the corresponding power spectrum, but rather in terms of

the autocorrelation function. Even then the results are not ob-

vious or easily interpreted.

Let R(x) be the autocorrelation function of the noise. The

autocorrelatlon function is the Fourier transform of the noise power

spectrum. Let_be the matrix formed from the values of the auto-

correlation function. That is

where

i

R11 R_z ... R_

RN_ RN_ ... RNN

Rmn = R(Xm-Xn)



and

Tm corresponds to the m th sample time

Xn corresponds to the nth sample time.

In addition to the above array another matrix is needed. Let

k_1 kmz ,.. k_ N

oeooeesoeaJeeooa,

kN1 XN_ .'' _,NN

in which ) is the inverse of_. That is if the elements of_

were the coefficients of a set of equations such as

Yl = 1_1 X 1 + l_m X_ + ... + 1KiN XN

ym = 1Rml X_. + iRmm Xm ÷ ... + I_N XN

uoooeeee _gm eeeooeoeeooeo ¢eooeeoe ¢eee_ee_

YN = RN_ Xl + RNz Xz + "'. + RNN XN

then the inverse set, or the solution, has the elements of A

as the coefficients - i.e.

X:_ = k1_ Y_ + ),I_ Y_ + -." + kIN YN

X_ = kin: Yl + kmI Y2 + ..- + kzN YN

eo • .e .o.eoeo a.o • oo e _ee q_eeo. • o _. 4}oo_.ee • eee

XN = A_ Y_. + KNZ Ya + "" + kICN YN
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Now we can write the Joint gaussian distribution that the noise

amplitudes at the N sample times are nI, n_,...nk, ...nN as

p(r_, n_...n N)

N N

1 _i
= N exp {- 2 1 I _mn nm nn}

m=ln=l

whe re

A

IA( =

{_mn] is the inverse of the autocorrelation matrix

determinant corresponding to A

If, as for the case of white noise, we form the log of the likeli-

hood ratio, the result is

N N
i I

m=l n=l

Imn(Ym-Som)(Yn-Son }

N N

+ -- I Xmn(Ym'Slm)(Yn'Sln)}
2

= n=l

The factor --i can be included in the decision threshold. The
2

voltage level or the test statistic, the receiver "evaluates"

is this quantity or the equivalent. By multiplying out, the

test statistic can be simplified to

I
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N N

m=l n=l

+ s_n Yn + Ym Son - sore Son

+ YmYn - S_m Yn - Ym Sln+ Slm Sln>

Noting

N N N N

m_l n_ S°m Yn = _ Z
= = m=l n=l

Ym Son

and similarly for s_(t), the test statistic reduces to

N N

Z Z kmn(2Ym S°n - 2Ym Sln

m=l n=l

- Scm Son + Slm Sin)

The last two terms of the test statistic are deterministic.

Hence the test statistic can be simplified to

N N

ZZ
m=l n=l

 mn(Ym)(Son-S n)

Let N

 m°Z
n=l

kmn(Son-Sl n )

The test statistic is then

N

mZ mYm
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or as N _ co
T

_I f(t) y(t) dt

0

Thus a result is obtained for the colored noise case which is

similar to that obtained for the white noise case - namely, that

the optimum receiver should employ correlation. Instead of the

locally generated signal at the receiver being the difference sig-

nal

f(t) = [So(t) - s_(t)]

it should be determined from the sampled values, _

f
m

To do this we note that the matrix [_mn] and [Rnm] are inverses of

each other. Hence the set of simultaneous equations for the sampled

values of f(t) - i.e.

fz = I:,(So, - sz,) + _,(_o2 - sz,) + ... _2z_(SoN- s_z_)

f_ = k_1(Sol - s_,) + ),_2(So_ - sls) + ... X_N(SoN - SIN)

@.UU4P • 0_ e. • m • Oe OqP 4 • I 4 OaP • OO lee .O O OO. 4 UO OeJO @ 0 I..@O J "O OOOO6 . $

fN = )'NI(So* " s11) + kNs(So_ - s,s) + ... ANN(SoN - SIN)

has the solution
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(Sol - s_1) = R1_f I + R1sf z + ... R_Nf N

(Soz -sx_ ) = l_lf 1 ÷ l_fz + ... P_NfN

e eee e eo e oe eoeeeeeomeele @ee eoeeeeegoo@el@oe

CsoN- s_N) -- _f_ + R_f_ + ... _fN

or for all n

N

(Son - S_n) = m=_Rnmfm

In the limit as t&_ O, N _ co and

T

[So(t ) - s1(t)] = / R(t-x) f(x) dx

0

This is the basic equation from which f(t) is determined. In

the case in which the noise is white, R(t) is a delta function -

i.e. R(x) = 2Wz 6(x). In this case

[So(t ) - s_(t)] = 2W_ f(t)

or neglecting the scale factor

f(t) = [So(t) - st(t)]

as before.

In order to design the optimum receiver it is necessary
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to solve the integral equation

ESo(t) - s_(t)l

T

0

for the waveform f(t). Oncethis waveform is knownthe re-

ceived signal can be correlated (or an equivalent operation

performed) with f(t) and the output of the correlator compared

with a preset threshold to decide if so(t) or st(t) is more

likely the signal sent.

To determine f(t) weproceed in a manneranalogous to

solving ordinary differential equations. That is, the homogen-

The homogeneousintegraleous equation is solved for first.

equation is

_ _(t)

T

0

This equation has the trivial solution _(t) = O. It also has

non-trlvial solutions for certain definite values of _. Each

value of _ for which there is a non-trivial solution is called

an eigenvalue, and the corresponding function _(t) is called an

eigenfunction.

Diversion

An integral equation of the form
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_ _(t)

T

_ R(t-x) _(x) dx
0

has solutions of the samecharacter as an ordinary differential

equation plus boundary conditions. For example, consider the

ordinary differential equation

ds y(t)
+ _Zy(t) = 0

dt_

This has the trivial solution y(t) = O. It has the general non-

trivial solution

y(t) = A cos _t + B sin _t

in which A and B are arbitrary, and _ can be any constant.

hovever, we impose the boundary conditions

y(O) = o

y(x) = o

If,

then the solution becomes

y(t) = B sin _nt_

Thus, only if the constant _ equals _n for n = O, ± I, ± 2,...

is there a non-trivial solution to the differential equation which

also satisfies the boundary conditions. These values of _ for
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which a non-trivial solution exists are called eigenvalues and

the corresponding functions are called eigenfunctions.

A homogeneous ordinary differential equation with

boundary conditions can be converted to an integral equation.

For example, consider the above differential equation with the

boundary conditions. These correspond to the integral equation

a_ y(t)

T

_ K(t,x) y(x) dx

0

in which K(t,x), the kernel, is

K(t,x) = (l-t)X 0 _ X _ t _ i

t(l-_) O!tZ_Zl

This type of kernel, called triangular, is shown below.

K (t,=)I

Because of the relation between integral and differential equations,

one valuable technique for solving integral equations is to determine

the corresponding differential equation.

End of Diversion
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For convenience consider the solution of this equation

corresponding to the lowest value of _m to be the first eigen-

function, the next lowest, the second eigenfunction and so on.

Then one interesting property of these solutions is that they

are orthogonal and complete. Thus if _k(t) and mm(t) are two

solutions

T

_I mk(t) _m (t)

o

= 0 if k _m.

This property makes it easy to expand the signal waveforms in

terms of these functions, for if we let

So(t ) = C_ m_(t) + C2 ms(t) + Cs ms(t) + ....

Then

T

So(t ) _k(t) dt =

0

T T

C1_q01(t ) ink(t)dt + ... CkI_0_(t)dt + ...

0 O

and since the _'s are orthognal

T T

_So(t ) _Ok(t) dt = Ck _I m_(t) dt

0 0

Hence the coefficients of the expansion are given by

21
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Ok

T

_ISo(t) _k(t) dt

T

_(t) dt

0

Note that since the equations are homogeneous the _'s can be

multiplied by any factor and still remain solutions of the in-

tegral equation. By properly selecting this factor we can nor-

malize the _'s so that

T

f _(t) dt

0

= i

for each function.

Ck

Then

T

= f So(t) _k(t) dt

0

Similarly if

s_(t) = dI _o1(t) + dm _2(t) + ds _os(t) + ....

Then

T

dk = 0_ s_(t) _ok(t) dt
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If now we wish to solve the non-homogeneousintegral equation

for the correlation signal f(t) - i.e. solve

T

_ R(t-x) f(r) dr
0

So(t) - s1(t)

Weseek a series solution for f(t) of the sameform

f(t) = el q_1(t) + e_ _z(t) + ....

Wenote

T T oo

_ R(t-r)f(r)dr = _ R(t-x) {Z ek_k(r) }
0 k=l

aT

oo T

Z ek _ R(t-x)_k(X) dx

k=l 0

But since _k(t) is a solution of the homogeneous equation

T

_ R(t-x) _k(r) = _ _k(t)

0

T

R(t-x) f(r) dx = ek _ _k(t)

0 k=l
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This must equal So(t) - s_(t), or

So(t ) - s,(t )

OO

(ck-ak) k(t)
k=l

Equating coefficients we find

e k .= Ck - dk

or

f(t) =

O0

X _ Ck"- -dk > _k(t)

k=l _

From the relation one form of the optimum receiver is found to be

_ (t)_ c°rrelat°r

I

_z (t)_ Correlator

I

I
I

I

_k(t) _ Correlator l

I

I

I

J Voltage IDivider

l

Voltage

Divider

D

I

VoltageDivider

i
!

I

Sum
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Each voltage divider is adjusted for the appropriate factor -

the kth divider for (Ck-dk)/_ _. Note that since _ increases

for increasing k an infinite numberof correlators and dividers

is not required for a practical system as the contribution to

the sumbecomesvery small for high k. It can be shownthat

_ is the variance or meansquared noise of the output of the

kth correlator. Thus the high noise correlator outputs are

properly weighted downby the divider circuits.
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III. Details of the Indirect Solution

In order to gain further insight into the basis and opera-

tion of an optimum receiver for detecting signals in colored noise,

let us start anew and consider this problem independently of the

previous analysis.

Consider that one of two known signals So(t ) and st(t)

is transmitted for a fixed interval 0 < t ( T. The transmitted

signal is corrupted by additive stationary gausslan noise of a

known spectral density or, correspondingly, a known autocorrela-

tion function. The decision to be made at the receiver is whether

So(t) or st(t) Ms actually sent.

We could proceed as before and base the likelihood ratio

on the values attained by the received signal y(t) at intervals

of time spaced tA apart (tA _ 0 in the limit). However, these

observed values being correlated led to the algebraic difficul-

ties previously considered. Specifically, the Joint conditional

probability P(Yl, Y2, Y3 ... /Sol, So2, Sos ... ) cannot be written

as the product of probabilities of the form p(yj/SoJ) unless the

noise is white.

Now the set of values (Yl, Y2 ... ) can be looked upon

as a set of observable coefficients or coordinates on which the

likelihood ratio is based. Note that the set to use is no___tsug-

gested by the likelihood ratio and must be independently sought.



22

The set of coefficients or coordinates previously used was the

sampledvalues of the received signal (in the limit the instan-

taneous signal amplitude). Here we shall use what appears to be

a different set of observable coordinates and later show they are

in effect the same.

Oneuseful suggestion is to find a set of observable

coordinates Yk that are uncorrelated but can be generated from

the received signal y(t) by linear operations. We desire to have

y(t) : Yk k(t)
k

in whlch_ for convenience_ the set _k(t) is orthonormalwith re-

spect to the internal 0 _ t _ T. This permits the coordinates

(or coefficients) Yk to be computed from

T

Yk = | _k(t) y(t) dt

0

Thus the optimum receiver will be as previously shown_ but the

voltage division ratios remain to be determined. In the receiver

any one of the coefficients Yk could be generated by passing the

received signal y(t) through a filter matched to the waveform

Sk(t)_ 0 _ t < T. At the end of the observation interval the

output of the filter would be the coefficient Ykfor the received

signal y(t). Note that Yk Is a random variable In the sense that
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if so(t) is repeatedly sent, then the different w_veforms the

random noise interference takes yields different values for Yk"

Thus YkhaS a certain probability distribution when So(t) is sent

and a different (we hope) probability distribution when s2(t) is

sent.

{_ _ 2_tOne possible orthonormal set is , cos

_2 _ 2_nt _ 2_ntsin 2___t, ... cos__T__ , sln__T__ , }

However we not only desire the convenience of an orthonormal set,

{s_"ItI_but that the set {Yk} corresponding to so t being sent be com-

posed of random variables which are independent. Then,

P[Yl, Y2_. °... / so(t) ] = p[Yl/so(t) ] p[Y2/so(t) ] .... .

which is the relation desired.

We note, since the noise is additive, that

y(t) : s(t) + n(t)

in which s(t) stands for either So(t) or s1(t)_ and n(t) is the

additive gaussian interference. Then

T

Yk = I _k(t) y(t) dt

0

T T

Yk = I Jk(t) s(t) dt + I _k(t) n(t) dt

0 0
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Thus Yk has a gausslan distribution. The meanvalue is

meany_ =

T

_I _k(t) s(t) dt
0

and the variance is

variance Yk = ( E

T

_k(t) n(t) dt _2
I.

0

T T

I I _k(t) _k(m) (n(t) n(T) _ dt dT

0 0

T T

= I _ _k(t) Sk(T) R(t-_) dt dT

0 0

in _hlch R(t-T) isthe autocorrelatlon function of the noise.

No, we desire YJ,Yk to be independent for J _ k in the sense that

the random parts of yj, Yk are to be independent. This means

T T

I _k(t) n(t) dt • I SJ(T) n(T) dr _ = 0

0 0

or

T T

_ _ _k(t) SJ(T) <n(t) n(T) >dt dT =0

0 0
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T T

or I I Sk(t) _j(t) R(t-T) dt dT = 0 for J %k
0 0

Assumethat _e can solve the above equation for an orthonormal

set [_k(t)} such that the observable coordinates are independent.

Further assumethat the set [Qk(t)] is also complete. Then the

receiver can generate, by meansof a bank of filters matched to

the set [_k(t)}, a set of outputs Yk at the end of the observation

interval. As can be seen the output Yk can be written as

Yk = ak + Zk if so is sent

or Yk = bk + Zk if sl is sent

T

in which ak = L so(t) _k(t) dt

0

T

bk = I s_(t) _k(t) dt

0

and zk is a random variable of zero mean, different Zk'S being un-

correlated and hence the Zk'S are mutually independent gausslan

random variables. As before the likelihood ratio can be taken

and again, for convenience, the natural logarithm of the likelihood

ratio considered as the test statistic. This is, using the first

3G
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N coordinates,

N N

k=l ak_ k=l ch2

holds true if

in which _k e is the variance of Z k •

The analogy to the white gaussian noise problem is now

quite evident. The main problem is to generate the orthonormal

set [_k(t)]. To do this we note that the equation

T T

I I _k(t) 'j(,) R(t-,) dt d_ =0 , J _ k

0 0

T

f _j(_) R(t-_) dr =kj _j(t)

0

for then

T T T

I I Ik(t) _J(_) R(t'_) dt d_ _ I Qk(t) " _J _J(t) dt

0 0 0

= o if k _ J

= kj if k = j

Since

T T

_ _ _j(t) lj(_) R(t-v) dt d_ =_Jm, the variance of zJ,

0 0

then _j = aja

3]
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Hence to find the orthonormal functions @j(t) we need to solve

the homogeneous equation

T

I _j(T) R(t-T) dT =(_J2 _j(t)

0

in which R(T) is the autocorrelation function of the additive

gausslan noise interference.

To find the actual quantity the receiver is to evaluate,

note that by using the first N coordinates the log of the likeli-

hood ratio is

N N 2

+Z t"
k=l ak2 k=l _k2 "

or

N N

Z bke- ake + Z Yk(ak- bk)

k=l _km k=l _k2

The first term is a deterministic_ since this depends only on the

signal structure - i.e._

T

ak = I s°(t) _k(t)

0

dt

T

bk = I Sl(t) @k(t) dt

0

8,1
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The value of the second term depends on which signal Is sent and,

of course, the noise. Therefore the likelihood ratio test is

based on comparing

N

Z "
k-1 _k2

with a threshold.

Before considering the limiting behavior as N _ it

is convenient to introduce

N

fN (t) = Z

k=l

(ak - bk)

_k m
_k(t)

If Sk 2 was independent of k_ for example qk _= l, then

co co

lira fN(t) = _ ak _k(t) - ), bk _k(t)

N - oo k=l k=l

= So(t) - sl(t)

Otherwise the relation is not as simple.

To write the test statistic in terms of fN(t) we note

that

N N

Z (bkm- akin) + _ Yk(ak" bk)

k=l ak2 k=l _k_

caube written as
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N

k=l

N

_ke k=l _k2

or

N

k=l

T

._ [Sl(t)+ So(t)_ _k(t) dt }{ bk-a k }

_k e

N

÷Z
k=l

T

E _ y(t) ,k(t) dt_ Eak - bk_

_k e

or

or

T

,[E
0

So(t) + st(t)

2

N

3 _, _k(t) [ak-bk]
k=l _ke

This is fN(t)
T

I fN(t) Ey(t) - sO(t) + Sl(t)

0

d.t

Formally if N _ co, the test statistic becc_es

T

I f( Fy ( so(t) + sl(t)2 _ dtt) t)
L..

0

Note that since f(t)_ so(t), and sl(t) are determlnistic_ the

test statistic can be simplified to

3
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I y(t) f(t) dt

0

Thus detection in colored noise is by correlation. Instead of

correlating the received signal with [So(t) - st(t)] as for white

gaussian noise, however, the related signal f(t) is used. To de-

termine the integral equation for f(t), we note, by definition,

N

fN(t)= 7, (ak - bk)
k=l _k m

_k(t)

and that fN(t) is thus the solution of

T T

R(t-m) fN(T) dv = R(t-T)

k=l
0 0

(ak - bk)

_k m
_k(_)d_

N

k._ (ak - bk)

T

j, R(t-T) _k(_) dm

by definition of _k(t)

_=ak 2 _k(t)

N

= i (ak " bk) _k(t)

k=l

._
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As N * co _ at least formally, f(t) is the solution of:

T

I R(t-T) f(T) dT = So(t) -sl(t)

0

This resultj together with the fact that the receiver is to compute

T

I y(t) f(t) dt

0

specifies the optimum receiver.

S
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IV. A Simple Example

Consider the case in which the power spectral density of

the noise is

Wn((O) = Am + Be _e (double-sided spectrum)

This can be considered the "video-noise" corresponding to the

synchronous detection of an r-f signs,.l_ or a "weighting function"

representing the receiver bandpass characteristics.

+oo

i I [Ae + Be a_e] eja_ dmThen R(_) = 2---_

-oo

=A 2 8(_)- _ _" (_)

in which 6(m) = Dirac delta function

6"(T) = Second derivative of the Dirac delta function.

The orthonormal functions _k(t) are solutions of

2
ak

T

_k(t) = I _k(T) R(t-T) dT

0
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or

T

_km _k(t) = ,I _k(m) [A2 8(t-_) - B2 8"(t-_)] dm

0

= Am _k(t) - B_ _'(t)

Thus the functions _k(t) are solutions of the differential equation

Bm _'(t) + (_k2 - A2) _k(t) = 0

subject to the condition

T

I _k(t) In(t) dt = 6kn

0

The solutions are

y . Aekl cos t _keB2 J ak - Amand ke sin t Ba

the requirement

giving

T

I _k _n 6kn
dt

0

_. _ke._ A2 _ 2_kT

or
T
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The functions _k(t) are thus of the normalized form

2_kt 2_kt
Wr2cos -- and Wr2sin

T T

The kth observable coordinates are therefore

T T

I t I tJ2 y(t) cos ---- dt and J2 y(t) sin -- dt

, T _ T
0 0

These observable coordinates are proportional to the

Fourier Series coefficients of the received signal. Note, how-

ever, that the variance associated with the kth coordinates,

Ok_, increases with increasing k. This is reflected in the fact

that higher order coordinates are more heavily weighted before

being summed to form the output level of the receiver (See Figure).


